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Identified particle distributions in pp and Au+Au collisions at
√

sNN = 200 GeV
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Transverse mass and rapidity distributions for charged pions, charged kaons, protons and antipro-
tons are reported for

√
sNN = 200 GeV pp and Au+Au collisions at RHIC. The transverse mass

distributions are rapidity independent within |y| < 0.5, consistent with a boost-invariant system in
this rapidity interval. Spectral shapes and relative particle yields are similar in pp and peripheral
Au+Au collisions and change smoothly to central Au+Au collisions. No centrality dependence was
observed in the kaon and antiproton production rates relative to the pion production rate from
medium-central to central collisions. Chemical and kinetic equilibrium model fits to our data reveal
strong radial flow and relatively long duration from chemical to kinetic freeze-out in central Au+Au
collisions. The chemical freeze-out temperature appears to be independent of initial conditions at
RHIC energies.

PACS numbers: PACS number(s):25.75.Dw

Quantum chromodynamics predicts the existence of
a new form of matter, the quark-gluon plasma (QGP),
at extreme conditions of high energy density, possibly

achieved in relativistic heavy ion collisions [1]. Signals of
QGP may remain in the bulk properties of the collision,
and simultaneous observations of multiple QGP signals
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in the final state would serve as a strong evidence of QGP
formation. These bulk properties include strangeness and
baryon production rates and collective transverse radial
flow. These can be studied via particle spectra.

In this letter we report results on charged pion (π±),
charged kaon (K±), proton (p) and antiproton (p̄) pro-
duction from pp and Au+Au collisions at RHIC by the
STAR experiment at the nucleon-nucleon center-of-mass
energy of

√
sNN = 200 GeV. In some models it is argued

that particle multiplicity density per transverse area of
interaction measures the initial gluon density [2], parti-
cle ratios measure the chemical freeze-out conditions [3],
and transverse momentum spectra measure the kinetic
freeze-out conditions [4]. We study these properties at
mid-rapidity as a function of centrality. The rapidity de-
pendences of particle production and spectra shape are
also investigated.

Charged particles are detected in the STAR Time Pro-
jection Chamber (TPC) [5]. The TPC is surrounded by a
solenoidal magnet providing a uniform magnetic field of
0.5 T along the beam line. Zero degree calorimeters and
beam-beam counters [6] provide a minimum bias trigger
for Au+Au and pp collisions, respectively. Events with a
primary vertex within ±25 cm of the geometric center of
the TPC along the beam axis are accepted. For this anal-
ysis, about 2.0×106 Au+Au and about 2.5×106 pp mini-
mum bias accepted events are used. Only primary tracks
- tracks pointing to the primary vertex within 3 cm - are
selected. The Au+Au events are divided into 9 centrality
classes based on measured charged particle multiplicity
within pseudo-rapidity |η| < 0.5. These classes consist,
from central to peripheral, of 0-5%, 5-10%, 10-20%, 20-
30%, 30-40%, 40-50%, 50-60%, 60-70%, and 70-80% of
the geometrical cross-section.

Particle identification is accomplished by measuring
the ionization energy loss dE/dx. The mean 〈dE/dx〉
is determined from 70% of the samples with the low-
est dE/dx along a track. To insure good momentum
and 〈dE/dx〉 resolution tracks are required to have at
least 25 out of the maximum 45 hits in the TPC. The
〈dE/dx〉 resolution varies between 6% and 10% from pp
to central Au+Au events. The reconstructed momenta
are corrected for most likely energy loss in the detector.
The correction is negligible for π±, under 2% for K± and
under 5% for p and p̄ in the covered momentum ranges.
The momentum resolution was estimated to be about 2%
at p⊥ = 0.5 GeV/c. Uncorrected particle yields are ex-
tracted from 〈dE/dx〉 distributions for each p⊥, rapidity
and centrality bin [7, 8, 9, 10].

Corrections are applied to account for tracking inef-
ficiency, detector acceptance, hadronic interactions, and
particle decays. The total reconstruction efficiencies are
obtained from embedding Monte Carlo (MC) tracks into
real events at the raw data level and subsequently recon-
structing these events. The propagation of single tracks
is calculated using GEANT, a detailed description of the

STAR geometry, and a realistic simulation of the TPC
response [7, 8, 9, 10]. The efficiencies for π± are 50-70%
and 80-90% in the covered p⊥ for the 0-5% and 70-80%
events, respectively. The corresponding efficiencies for
K± are 40-70% and 20-50% and for p and p̄ 70-75% and
75-80%. Background protons knocked out from the de-
tector material are subtracted. This background is 50-
60% at p⊥ = 0.4 GeV/c and becomes less than 5% at
1.0 GeV/c [8].

Corrections for the pp data are similar to those for the
70-80% Au+Au events. Additional corrections are ap-
plied for primary vertex reconstruction inefficiency and
fake events (events with mis-reconstructed vertex due
to pile-up background). These corrections are obtained
by embedding HIJING [11] events into events that had
been triggered on empty bunches, and reconstructing the
combined events. The vertex reconstruction inefficiency
strongly decreases with increasing event multiplicity re-
sulting in approximately 14% of events being missed,
over 80% of which have fewer than three tracks in the
TPC. About 12% of pp events are fake events with re-
constructed multiplicity about half of that of real events
due to time distortion in the pile-up background, result-
ing in an overall correction of 6-8% in the covered p⊥
range.

The pion spectra are further corrected for weak de-
cay products, muon contamination and background pi-
ons produced in the detector material. The weak decay
correction is approximately 12% and was estimated from
the measured K0

s and Λ distributions [10, 12] extrapo-
lated to our energy. Because weak decay (anti)protons
carry most of the parent momentum, their tracks behave
as those originating from the primary vertex, resulting
in the same reconstruction efficiency for weak decay and
primary (anti)protons over the measured p⊥ range.

The inclusive (anti)protons closely reflect total
(anti)baryon production [7, 8]. Therefore we present in-
clusive proton and antiproton distributions that are not
corrected for weak decays. Based on the measured Λ dis-
tribution [12], we estimate that about 40% of the mea-
sured protons are from weak decays, and the measured
inclusive 〈p⊥〉 are similar to those of primary protons.

The point to point systematic uncertainties on the
spectra are estimated by varying event and track selec-
tion and analysis cuts and by assessing sample purity
from the dE/dx measurement. The estimated uncertain-
ties are less than 4% for π±, p and p̄. Those for K±

are less than 12% for p⊥ bins with significant overlap in
dE/dx with e± or π±, and less than 4% for other bins.
An additional systematic error on the proton spectra due
to background subtraction is estimated to be 5% at low
p⊥ and negligible at high p⊥ [8]. A correlated system-
atic uncertainty of 5% is estimated for all spectra and is
dominated by uncertainties in the MC determination of
reconstruction efficiencies.

Figure 1 shows transverse mass (m⊥ =
√

p2
⊥

+ m2)
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FIG. 1: Invariant yield as function of transverse mass for π±, K±, and inclusive p and p̄ at mid-rapidity (|y| < 0.1) for pp
(bottom) and Au+Au events from 70-80% (second bottom) to the 0-5% centrality bin (top). Statistical and point-to-point
systematic errors have been added in quadrature. Additional correlated systematic error due to uncertainty in the normalization
is estimated to be 5%. Open circles are for positive particles (all proton spectra are scaled by 0.8), and closed triangles are for
negative particles. The curves shown (Bose-Einstein fits for π− and blast-wave model fits for K− and p̄) are explained in the
text.

spectra for π±, K±, p and p̄ for pp and all centrality bins
of Au+Au data within |y| < 0.1. For clarity, proton spec-
tra are scaled by 0.8. Particle and anti-particle spectra
shapes are similar for each centrality bin. While the π±

spectra shapes are similar for pp and Au+Au, K±, p and
p̄ spectra show a progressive flattening from pp to cen-
tral Au+Au events. Our pp results are consistent with
previous measurements at similar multiplicities [13].

The blast-wave model − a hydrodynamically moti-
vated model with a kinetic freeze-out temperature Tkin

and a transverse flow velocity field β [4] − can simul-
taneously fit the K±, p and p̄ spectra and the high-p⊥
part (p⊥ > 0.50 GeV/c) of the π± spectra. We used
a velocity profile of β = βs(r/R)n, where r ≤ R (the
term r/R accounts for the change in the velocity as a
function of radial distance), βs is the surface velocity,
and n is treated as a free parameter. The value of n
ranges from 1.50 ± 0.29 in peripheral to 0.82 ± 0.02 in
central events. The fit results are superimposed in Fig.
1(b,c). The obtained fit parameters for the 0-5% Au+Au
events are Tkin = 89 ± 10 MeV and 〈β〉 = 0.59 ± 0.05,
βs = 0.84 ± 0.07, and are similar to the 130 GeV results
reported in [9, 14]. The systematic uncertainties in the
fit parameters are estimated by excluding the kaon or the
(anti)proton spectra from the fit.

Recent attempts to fit the measured RHIC spectra
with a single (chemical and kinetic) freeze-out temper-
ature claim this is possible if all the resonance and weak

decay feed-downs are taken into account [15]. Our MC
study of that scenario shows significantly higher χ2/NDF
compared to our blast-wave fits.

The low-p⊥ part of the pion spectrum deviates from
the blast-wave model description, possibly due to large
contributions from resonances at low p⊥. We fit the pion
spectra to a Bose-Einstein distribution (∝ 1/(exp m⊥

T −
1)), the results of which are superimposed in Fig.1(a).
The yields outside the measured p⊥ region are extrapo-
lated using the blast-wave model for K±, p and p̄ and
the Bose-Einstein distribution for π±. The uncertainties
on these extrapolations are estimated by comparing to
results using other functional forms. The estimated ex-
trapolation uncertainties in the 〈p⊥〉 and total yield are
5% for π± and 5 to 10% for K±, p and p̄ (varying from
pp to central Au+Au collisions). For the 0-5% Au+Au
collisions, the integrated yields are dN/dy = 322± 32 for
π+, 327 ± 33 for π−, 51.3 ± 7.7 for K+, 49.5 ± 7.4 for
K−, 34.7 ± 6.2 for p and 26.7 ± 4.0 for p̄. The obtained
p/p ratio for the 0-5% Au+Au collisions is 0.77 ± 0.05,
indicating a nearly net-baryon free mid-rapidity region
at this RHIC energy.

We extract the fiducial dN/dy by summing up the
yields within the p⊥ range of 0.20-0.70 GeV/c for π−,
0.25-0.60 GeV/c for K−, and 0.50-1.05 GeV/c for p̄.
Figure 2 depicts the rapidity dependence of the fiducial
dN/dy and extrapolated 〈p⊥〉 for the 0-5% and 70-80%
Au+Au events. We do not observe changes in either
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shape or yield for any particle species within |y| < 0.5.
The pp data and all other centrality bins of the Au+Au
data exhibit the same behavior. Such an absence of ra-
pidity dependence of particle spectra was also observed
for π±, p and p̄ at

√
sNN = 130 GeV Au+Au colli-

sions [8, 9]. This uniformity indicates the development of
a boost-invariant region within the measured kinematic
ranges.

-0.5 0 0.5

d
N

/d
y

0

10

20

30

40

Central

/5-π

p

-K

y-0.5 0 0.5

> 
 (

G
eV

/c
) 

  
T

<p

0

0.2
0.4
0.6
0.8

1

-π

Central

0

p

-K

-0.5 0 0.5

d
N

/d
y

0

0.5

1

1.5
/5-π

Peripheral

p

-K

y-0.5 0 0.5

> 
 (

G
eV

/c
) 

  
T

<p

0

0.2
0.4
0.6
0.8

1

 -π

p
-K

Peripheral

0

FIG. 2: Rapidity distributions of the fiducial yields and inte-
grated 〈p⊥〉 for the 0-5% and 70-80% Au+Au collisions. Pion
yields are scaled down by a factor of 5. Errors shown are
those propagated from Fig.1. Systematic errors on the fidu-
cial yields are 5%; those on 〈p⊥〉 are 5% for pions and 5-10%
for kaons and antiprotons.

The centrality dependence of the extracted 〈p⊥〉 within
|y| < 0.1 is shown in Fig. 3(a). A smooth changeover
from pp to peripheral Au+Au collisions is observed for
all particle species. The 〈p⊥〉 increases from pp and pe-
ripheral Au+Au to central Au+Au collisions, especially
for p, p̄ and K±. This behavior is consistent with an
increase of radial flow with collision centrality.

The K−/π− and p̄/π− ratios of the integrated dN/dy
yields within |y| < 0.1 are depicted in Fig. 3(b). We
observe little centrality dependence of the K−/π− or
p̄/π− ratio from mid-central to central Au+Au collisions,
indicating a similar freeze-out condition in these colli-
sions. Similar centrality behavior has been observed for
other particle ratios measured at

√
sNN = 200 GeV and

130 GeV [8, 10].

The observed centrality independence of K−/π− is
in contrast to low energy data at SPS [16] and AGS
[17], where a continuous increase in K−/π was observed,
roughly doubling from peripheral to central collisions. To
put our results into perspective with low energy data,
we plot in Fig. 3(c) the K−/π ratio as a function of
(dN/dy)π

S , in an attempt to reflect effects of both the col-
lision energy and centrality. Here S is an estimate of
the transverse overlap area based on the number of par-
ticipants [9], experimentally measured for the AGS and
SPS data and calculated via the MC Glauber model for
RHIC data [9]. The (dN/dy)π

S may be related to the initial
conditions of the collision [2, 18], such as energy density.

In high energy collisions the initial gluon density is sat-
urated up to a momentum scale that is proportional to
√

(dN/dy)π

S [2]. Using data over a wide range of collision

energy measured in various colliding systems, Fig. 3(c)
shows a distinct change in the ratio behavior. Low en-
ergy measurements (each representing approximately top
60% of the geometrical cross section) appear to follow a
trend that saturates at RHIC energies. One interpreta-
tion of this is that strangeness production at low energies
depends on how the collision was initially prepared, but
not at RHIC energies. On the other hand, the K+/π and

p̄/π ratios do not reveal a common trend with (dN/dy)π

S .
However, we note that the net-baryon density, significant
at low energies, greatly affects K+ and p̄ abundances
through associated production of K+ with baryons [10]
and baryon-antibaryon annihilation [19], respectively.

In the framework of a chemical-equilibrium model [3,
20], integrated yield ratios can be described by a set of
parameters: the chemical freeze-out temperature (Tch),
the baryon and strangeness chemical potentials (µB, µs),
and the strangeness suppression factor (γs). We fit our
measured ratios with such a model to extract these pa-
rameters. The value obtained for the chemical potential,
µB ≈ 22 ± 4 MeV, is independent of centrality within
errors, and µs is consistent with 0. The obtained γs in-
creases from 0.56 ± 0.04 in pp to 0.86 ± 0.11 in central
Au+Au collisions reflecting the measured K/π ratios.
The obtained Tch is summarized in Fig. 4 as a function of
charged hadron multiplicity, together with Tkin and 〈β〉
extracted from the blast-wave model fit to our data. As

seen in Fig. 4,
√

(dN/dy)π

S increases with centrality, Tch is

independent of it, Tkin decreases and 〈β〉 increases with
centrality. This suggests that Au+Au collisions of differ-
ent initial conditions always evolve to the same chemical
freeze-out condition, and then cool down further to a ki-
netic freeze-out dependent on centrality. The expansion
of the system gives rise to collective flow.

During expansion from chemical to kinetic freeze-out,
entropy density drops approximately as T 3 [21], implying
that the system size at kinetic freeze-out is at least a
factor of Tch

Tkin

of the size at chemical freeze-out. This
suggests a time span from chemical to kinetic freeze-out
in central collisions is at least of the order of ∆t ≈ ( Tch

Tkin

−
1)R/βs ≈ 6 fm/c. Here we have taken R = 6 fm, the
Au nuclei radius, as an estimate of the system size at
chemical freeze-out.

In summary, we have reported transverse mass and
rapidity distributions of π±, K±, p and p̄ for pp and
Au+Au collisions at

√
sNN = 200 GeV at RHIC. A

boost-invariant region of at least ∆y ≈ 1 is developed at
mid-rapidity for particles within our measured p⊥ range.
The spectra are well described by the blast-wave model,
yielding a decreasing Tkin and increasing 〈β〉 with cen-
trality, reaching the values of Tkin = 89 ± 10 MeV and
〈β〉 = 0.59 ± 0.05 in the 5% most central collisions. Par-
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S
. Systematic errors are shown for STAR data, and statistical errors for other data.
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FIG. 4: (a)

√

(dN/dy)π

S
(stars), Tch (circles) and Tkin (trian-

gles) and (b) 〈β〉 as a function of the charged hadron multi-
plicity. Errors are systematic.

ticle ratios vary smoothly from pp to peripheral Au+Au
and remain relatively constant from mid-central to cen-
tral Au+Au collisions. The K−/π ratio from various
collisions over a wide range of energy reveals a distinct

behavior in (dN/dy)π

S . A chemical equilibrium model fit
to the ratios yields a Tch insensitive to centrality with
a value of 157 ± 6 MeV for the 5% most central colli-
sions. The drop in temperature from Tch to Tkin and
the development of strong radial flow suggest a signifi-
cant expansion and long duration from chemical to ki-
netic freeze-out in central collisions. From these results
the following picture seems to emerge at RHIC: collision
systems with varying initial conditions always evolve to-
wards the same chemical freeze-out condition followed
by cooling and expansion of increasing magnitude with
centrality.
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